Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
J Endovasc Ther ; 30(3): 441-448, 2023 06.
Article En | MEDLINE | ID: mdl-35249398

BACKGROUND: In this study, we aimed to evaluate hemodynamic influence of the dissected aortic system via various ex vivo type B aortic dissection (AD) models. METHODS: Twenty-four raw porcine aortas were harvested and randomly divided into 4 groups to create various aortic models. Model A was the control group, while models B to D indicated the AD group, where models B and C presented a proximal primary entry with the false lumen (FL) lengths of 15 and 20 cm, respectively, and model D presented a 20 cm FL with a proximal primary entry and a distal reentry. All the aortic models were connected to a mock circulation loop to attain the realistic flow and pressure status. The flow distribution rate (FDR) of the aortic branches was calculated. Doppler ultrasound was applied to visualize the AD structure and to attain the velocity of flow in both the true and false lumens. Several sections of the AD were stained with hematoxylin and eosin for histologic evaluation after the experiment. RESULTS: This study demonstrated that higher pressures were found for the AD group compared with the control group. The mean systolic pressures at the inlet of models A to D were 113.34±0.81, 120.58±0.52, 117.76±0.82, and 115.87±0.42 mm Hg, respectively. The FDRs of the celiac artery in models A to D were 8.65%, 8.32%±0.15%, 7.87%±0.13%, and 8.03%±0.21%, respectively. By ultrasound visualization, the velocity of the flow at the entry to the FL in the AD group ranged in 10 to 92 cm/s. The dissection flap presented pulsatile movement, especially in the models B and C which contained 1 primary entry without distal reentries. Histological examinations indicated that AD was located between the intimal and medial layers. CONCLUSIONS: Our ex vivo models demonstrated that the configuration of the dissected aorta influenced the pressure distribution. Moreover, the dissection flap affected the FDR of the aortic branches that possibly inducing malperfusion syndrome.


Aortic Aneurysm, Thoracic , Aortic Aneurysm , Aortic Dissection , Animals , Aorta/surgery , Aortic Aneurysm/pathology , Aortic Aneurysm, Thoracic/diagnostic imaging , Aortic Aneurysm, Thoracic/surgery , Aortic Aneurysm, Thoracic/pathology , Aortic Dissection/diagnostic imaging , Aortic Dissection/surgery , Hemodynamics , Swine , Treatment Outcome
2.
Front Cardiovasc Med ; 9: 828910, 2022.
Article En | MEDLINE | ID: mdl-35449876

Background: Iliac branch devices (IBDs) are valid tools for internal iliac artery preservation during endovascular abdominal aortic aneurysm and iliac aneurysm repair. The purpose of this study was to evaluate the effectiveness of a novel IBD with an embedded branch configuration. Method: A typical iliac artery model was reconstructed, and two models were manufactured using three-dimensional printing technology. The novel IBD was deployed into one iliac artery model by an experienced vascular surgeon. A mock circulation loop (MCL) and a computational fluid dynamics (CFD) simulation were used to investigate the haemodynamic parameters of the iliac models without (Model A) and with (Model B) the IBD. A morphological analysis was conducted using computed tomography angiography and medical endoscopy. The flow distribution rate (FDR) and energy loss (EL) were used to quantify IBD performance. Results: The FDR of the right internal iliac artery in the MCL of Model A and Model B was 18.88 ± 0.12% and 16.26 ± 0.09%, respectively (P = 0.0013). The FDR of the right internal iliac artery in the CFD simulation of Model A and Model B was 17.52 and 14.49%, respectively. The EL of Model A was greater than Model B in both the MCL and the CFD simulation. Compared with Model A, Model B had a larger region (8.46 vs. 3.64%) with a relative residence time of >20 Pa-1 at peak systole. Meanwhile, the area where the oscillatory flow index was >0.4 was significantly smaller in Model B than in Model A (0.46 vs. 0.043%). The region with an average wall shear stress of >4 Pa was greater in Model B than in Model A (0 vs. 0.22%). Conclusion: The MCL and CFD simulation showed that the novel IBD had little impact on the FDR and EL of the iliac artery models. However, the IBD might be an effective tool for the treatment of abdominal aortic/iliac aneurysms that extend into branches. Further investigations are warranted to confirm whether this IBD could be useful in the clinic.

3.
Int J Numer Method Biomed Eng ; 37(9): e3507, 2021 09.
Article En | MEDLINE | ID: mdl-34184422

Fenestration is a rare congenital abnormality that refers to a segmental duplication of arteries. It is still not clear about the role of fenestrations in the etiology and pathological evolution of vascular diseases. This study aims to investigate the hemodynamic influence brought by various sizes and locations of fenestration in basilar artery models. A series presumptive fenestration models were established based on a normal basilar artery model with various sizes and locations. Identical boundary conditions were utilized in the computational fluid dynamics simulations and different flow patterns in the fenestration and bifurcation regions were comprehensively analyzed. Wall shear stress (WSS)-related parameters such as oscillatory shear index (OSI) and aneurysm formation index (AFI) were computed and compared. The value of WSS on fenestration increased by the fenestration's tortuosity, and nearly-circular fenestration suffered higher WSS than narrow-strips one. Also, high OSI and low AFI value mainly occurred in the bifurcation region, indicating a high level of turbulence and high risk of aneurysm formation. The location of fenestration mainly changed the impact force of blood flow on the bifurcation and the disorder characteristics of blood flow, while the size of fenestration changed the WSS distribution on the proximal inner wall and bifurcation region of fenestration. In summary, the nearly-circular fenestration should be stratified carefully which may results in a high risk inducing unfavorable vascular wall remodeling.


Intracranial Aneurysm , Models, Cardiovascular , Basilar Artery , Hemodynamics , Humans , Hydrodynamics , Stress, Mechanical
4.
IEEE Trans Neural Netw Learn Syst ; 26(7): 1388-402, 2015 Jul.
Article En | MEDLINE | ID: mdl-25134091

Two factors characterize a good feature selection algorithm: its accuracy and stability. This paper aims at introducing a new approach to stable feature selection algorithms. The innovation of this paper centers on a class of stable feature selection algorithms called feature weighting as regularized energy-based learning (FREL). Stability properties of FREL using L1 or L2 regularization are investigated. In addition, as a commonly adopted implementation strategy for enhanced stability, an ensemble FREL is proposed. A stability bound for the ensemble FREL is also presented. Our experiments using open source real microarray data, which are challenging high dimensionality small sample size problems demonstrate that our proposed ensemble FREL is not only stable but also achieves better or comparable accuracy than some other popular stable feature weighting methods.

...